lopscience = [lopscienceioporg

Home Search Collections Journals About Contactus My IOPscience

Riemann scalar curvature of ideal quantum gases obeying Gentile's statistics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 6373
(http://iopscience.iop.org/0305-4470/32/36/302)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.111
The article was downloaded on 02/06/2010 at 07:43

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/36
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. GerB2 (1999) 6373-6383. Printed in the UK PIl: S0305-4470(99)96322-9

Riemann scalar curvature of ideal quantum gases obeying
Gentile’s statistics

Hiroshi Oshimat, Tsunehiro Obata} and Hiroaki Hara§

T Department of Physics, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku,
Tokyo 143, Japan

T Department of Electrical Engineering, Gunma National College of Technology, 850
Toriba-machi, Maebashi 371, Japan

§ Graduate School of Engineering Science, Tohoku University, Aoba-ku, Sendai 980, Japan

Received 28 July 1998

Abstract. The scalar curvaturéR) of ideal quantum gases obeying Gentile’s statistics is
investigated by the method of information geometrical theory. Rhealue is specified by the
fugacityn and the maximum numbep, of particles in a state. The lowest case- 1, corresponds

to Fermi-Dirac statistics and the unbounded case; oo, to Bose—Einstein statistics. In contrast
to R = 0 for ideal classical gases obeying Boltzmann statistics, weRird +/2/32 for p > 2
andR = —+/2/32 forp = 1, inn — 0 which is the classical limit. This means that a quantum
statistical character is left iR, in the classical limit. Also, a correlation between the sigrkRof
and a quantum mechanical exchange effect is recognizedfer0 andn >> 1. Furthermore, we
obtain results that support the instability interpretatioRgiroposed by Janyszek and Mrugala.

1. Introduction

Geometrical approaches to thermodynamics have been tried by many authors. Contact
geometry was introduced into equilibrium thermodynamics by Hermann [1] and developed
by Mrugala [2], Janyszek and Mrugala [3]. Another geometrical approach to equilibrium
thermodynamics was based on the concept of the distance between thermodynamic states.
Weinhold [4] defined a metric tensor by the second derivatives of the internal etiergy
equilibrium systems with respect to extensive parameters.

Ruppeiner [5] included a fluctuation theory in the axioms of thermodynamics and defined
a Riemannian metric on a manifold of equilibrium states. His metric tensor was represented by
the second moments of fluctuation and he showed, calculating thermodynamic curgRjures
of many models, that th& values are equal to correlation volumes near critical points. Later,
the two metrics defined by Weinhold and Ruppeiner were shown, by Mrugala [6], Janyszek
and Mrugala [7] and Salamaat al [8], to be equivalent within a contact transformation.

A statistical approach to the geometry of thermodynamics was initiated by Ingarden [9]
and Ingarderet al [10]. They defined a metric, making use of a relative entropy. This
approach was applied by Janyszek and Mrugala (JM) to real and ideal gases [11], quantum
magnetic systems [12] and ideal quantum gases [13]. Stud¥iofideal quantum gases
obeying the Bose—Einstein statistics (BE) and the Fermi—Dirac statistics (FD), they proposed
the instability interpretation oR and also made the hypothesis that the sigR ofianifests a
quantum mechanical exchange effect.
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On the other hand, a differential information geometrical theory was constructed by
Amari [14] and others. In information geometrical theory a metric tensor is defined by the
expectation values of the second derivatives of a probability density function with respect to
its parameters. The theory contains a generalized connection with a paranveléch is
called anx-connection. Whemx = 0, the generalized connection reduces to the so-called
Riemann—Christoffel connection.

Recently, geometrical approaches to non-equilibrium systems were studied byeGdlata
[15] and Obata and Hara [16]. They introduced, by the method of information geometrical
theory, a metric on a space of probabilities that characterize random or correlated walks.
Through the calculation oR, they concluded thaR is a measure of instability in non-
equilibrium systems as well as in thermodynamic systems.

In this paper we calculat&, using the method of information geometrical theory, for
ideal quantum gases which obey Gentile’s statistics [17], which is one of the intermediate or
interpolative statistics. In Gentile’s statistics, the maximum number of particles in a state is an
arbitrary integep, in contrast with one for FD and infinity for BE. It has recently been shown
that idealg-fermion gases have the same property proviglesicomplex and has an absolute
value of one [18]. Ther of these gases is specified by the maximum occupation number
and the fugacity). The present calculation is a generalization of JM’s work [13] in which
was restricted to @& n < 1 and the statistics restricted to BE and FD. Through numerical and
analytical calculations oR in the same units as JM’s work we get the following results:

(1) Inthe limity — 0, which is a classical limitR — +/2/32 forp > 2 andR — —+/2/32
for p = 1 in contrast withR = O for ideal classical gases [5, 10, 11]. These results show
that a quantum statistical characteristic is preserveR] im the classical limit.

(2) In the intermediate range © n < 1, R is a monotonically increasing function pf So
we can say that Gentile’s statistics is intermediate between BE and FD with resect to

(3) R values inp — 0 andn > 1 show strong correlations due to a quantum mechanical
exchange effect.

(4) Ris infinity atn = 1 for p — oo which corresponds to the Bose—Einstein condensation.
This supports the instability interpretation ®fproposed by JM.

This paper is organized as follows. In section 2 we give a short review of information
geometrical theory for later convenience, and in section 3 apply the theory to ideal quantum
gases to reproduce the results of JM’s work. In section 4 we describe Gentile’s statistics and
derive a general formula of itR. In section 5 we represent a calculation methodRaand
give some results. Finally, in section 6 we discuss theses results. Throughout this paper we
follow Misner et al’s [19] convention for geometrical signatures.

2. Information geometrical theory and thermodynamics

In this section we briefly review the information geometrical theory [14] that is used to
geometrically analyse a family of probability density functions (PDF) and its application to
thermodynamics. Let(x, 6) be a PDF described by a probability variableand parameters

0 = {61,602, ..., 6" that characterize a system. A set of PDFs

S={p(x,0)0 € Q) 0= {662 ...,0" (1)

becomes am-dimensional statistical manifold havij coordinates.Q is a subset irR".
According to information geometrical theory, we can make a metric tens@):

gik(0) = E[0;l(x, 0)0l(x, 0)] = —E[0; 0l (x, 0)] )
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wherel(x, 6) = In p(x, 8) and E[ ] means the expectation operation with respeqgt e, 9).
The last expression is obtained by the use of the normalization condifigi(x, 6)] = 0.
This metric tensor is a Fisher information matrix in information theory.
We now restrict our attention to a special family of PDFs, called an exponential family,
that is described by

px.0) = exp[c’(x) +Y 0F(x) - w(e)] €)
i=1

whereC (x) and F; (x) are arbitrary functions of, andW (9) is a function of¢’ coordinates.

For example, a normal distribution function belongs to the family. The metric tensor of the

exponential family is straightforwardly obtained from equation (2) as

ERVIC))
i (0) = ——— 4
8ik(0) 29730k 4)
and then the Christoffel connection coefficients are given by
1 1 3°w ()
Tijk(0) = Z(gij + 98k — 0igjx) = = ———"r. 5
k(6) 2( 8ij + 08k — 0i8jk) > 307307 96F ©)
In case the parameter space is two-dimensionalRtieereduced to
1 g11 812 822 1 Vi1 Vi Yo
=55 |81 8121 g21|=—55— [P WY Vi (6)
2 2 2 2
detg) 8112 8122 8222 dete) Wi Wi VYoo

where(, i) means the derivative with respectd i = 1,2. Note that, in this cas® is
constituted by up to the first derivative of the metric tensor or the third derivativas®f
because of the symmetry of the metric tensor and the connection coefficients.

3. Scalar curvature of ideal Bose gases and Fermi gases

The PDF of a grand canonical ensemble is represented by

explaN — BE]

p(x,0) = =explaeN — BE — In E] @)

whereg = 1/kT, k is the Boltzmann constarif, the temperaturey = u/kT, u the chemical
potential andz the grand partition function. Comparing equation (7) with (3), we see that
the family of PDFs is a two-dimensional exponential family with coordinate®. Thus its
metric tensor can be calculated with formula (4), that is,

3%In :
k(@) = ——— o' =a, B). 8
qin(0) =~ 0" =a,pB) ®
The grand partition functiong for ideal gases obeying BE and FD are given by
ng=ve o 2, / Tl ey (+ for FD and— for BE) 9)
o= —= — e —
8 an33l |, ex1

whereV is the volumem the mass of a particle and= 2s + 1 wheres is its spin. The rhs
can be rewritten as

In & = gA*Vhs2(n) (10)

using the mean thermal wavelengtl= 1 /+/2rmkT , the fugacityy = ¢ = e*/*" andh,(n)
that are defined by

oo xlfl

1
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Table 1. R values for BE and FD in units ofi3/Vg. Corrections are made for numerical errors
for FD displayed on JM’s table 1 [13].

n BE FD

0.100 04539x 100! —0.4316x 1071
0.300 04852x 1071 —0.4146x 1071
0.500 05337x 10! —0.4010x 101
0.700 06245x 10°!  —0.3900x 1071
0.900 09187x 10! —0.3807x 1071
0.910 09563x 10°! —0.3802x 1071

0.920 0.1001 —0.3798x 1071
0.930 0.1054 —0.3794x 1071
0.940 0.1121 —0.3790x 1071
0.950 0.1207 —0.3786x 1071
0.960 0.1323 —0.3781x 107!
0.970 0.1493 —0.3777x 107!
0.980 0.1778 —0.3773x 107!
0.990 0.2423 —0.3769x 10!

(1) is the gamma function and (n) have the following recursion relations:
dh; (1)
dp
The metric tensor and its first derivatives are functionsigb(n), hs;2(n), hi2(n),
h_1/2(n) andR can be calculated by using equation (6):
R_t 23 hg/g(ﬁ)hl/z(ﬂ) - 2/15/2(77)}1%/2(77) + hsyo(mhz(m)h_1/2(n)
Vg [Shs/2(n)hi2(n) — 3h§/2(77)]2 .

JM [13] executed the series expansiohgh) with respect ta) under the conditionx n < 1
and obtained the result

hi—1(n) = n 12)

(13)

00 j
hi(n) = Z(ﬂ)i—l’;—l (— for FD and + for BE) (14)
j=1
By a numerical method, they also obtainRdor BE and FD. We have performed the same
numerical calculation in order to examine the extraordinarily large valuR$afFD displayed

in JM’s table 1 [13]. We found that their table includes large errors for FD. Our result fior

units of 5.3/ Vg is displayed in table 1 where numerical errors for FD are corrected. Table 1
shows thatrR for BE is positive and monotonically increasing to infinity ;asends to one,
whereask for FD is negative and very slowly increasing.

As fluctuations in single-phase systems are thermodynamically negligible, such systems
are relatively stable. Fluctuations become very important in multiphase systems, especially
in the vicinity of the critical points. As a result, in the closest vicinity of the critical points,
systems become extremely unstable. SiRcdepends on the second and third moments of
fluctuations, JM interprete® as a measure of global fluctuations in the systems caused by
quasi-interactions. From this, they insisted tRais a measure of the instability of systems.

Using this interpretation, they explained that the divergende aify = 1 for BE indicates the
unstableness of the Bose gases in the region where Bose—Einstein condensation occurs. Onthe
other hand, they insisted that the smallnes® of the classical limiy — 0 corresponds to the
stableness of Bose gases because the systems are far from the region in which Bose—Einstein
condensation occurs. Furthermore, they noted the sigd: oR > O for BE manifests the
quantum mechanical exchange effect as attractive, andRvithO for FD, repulsive.
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4. Scalar curvature of Gentile’s statistics

JM calculatedr of ideal quantum gases and suggested the instability interpretatién of
However, the study was restricted ta0y < 1 and only to BE and FD. The of ideal quantum
gases obeying intermediate statistics @h 1 < n have been left unsolved. To generalize
JM’s work, we choose Gentile’s statistics [17], which is the simplest of all the intermediate
statistics. The grand partition functidh of ideal quantum gases obeying Gentile’s statistics

is given by
m¥2 2 o 1 pt+1l
hEg=Vg——= - 324 15
2= Ve g amst [ g @y 09

where p represents the maximum number of particles that can occupy a single state. As is
easily confirmed, the function fgy = 1 reduces to the grand partition function for FD and

p — oo reduces to that for BE. Following equation (10), we represent the grand partition
function as

InE8 = Vg)»7305/2(77) (16)
where the functiori, () is defined by
1 0 1 p+1 1
Gi(n) = m/o [nle" “1 7 e 1] X' dx. a7)

This is a generalization of equation (11). TReof ideal quantum gases obeying Gentile’s
statistics is given by replacing () with G,(n) in equation (13):

)»_3 G%/g(’?)Gl/Z(’?) - 2G5/2(77)G%/2(77) + Gs2(n)G3/2(n)G_1/2(n)
Vg [5Gs/2(1)G1/2(n) — 3G3,(m)]? ’

R=5 (18)

5. Numerical and analytical calculation of R

We now numerically calculat® in the range AL < < 3.0, and forn — 0 and 1« 5 by
using a series expansion 6f(n). In the numerical calculation we transform the integrand of
equation (17) to

1 Y et kypik 3/2 ( _ ex)
Gsj2(n) = T62 Jy S lov x¥%dx Y= (19)
to avoid an apparent singularity dte- 5. By the transformation, the integrand of equation (19)
becomes finite at'e= n whenp < oo and infinite wherp — oo. The infinity corresponds
to the fact that the integrand of the grand partition function for BE is infinite at ¢. The
integration is numerically calculated by the Simpson method. The other comp@hgss),
G12(n), G_1/2(n) can be obtained straightforwardly through equation (12).

Figure 1 showsR values in units of 5%/Vg in the range A < n < 3.0 for
p = 1,5,10, 20,30 and alsor for p — oo. The numerical data fop = 1, cc is listed
in table 1. Figure 2 is a three-dimensional plot ®fin the ranges 4 < n < 3.0 and
1< p<30.

In the range) < 1, R is a monotonically increasing function pf Thus we can say that
Gentile’s statistics is intermediate between FD and BE with respekt teor BE the infinite
R atn = 1 corresponds to the Bose—Einstein condensation, whereas in the case of Gentile’s
statistics forp < oo, the finiteness oR atn = 1 suggests the stableness of systems because the
occupation number of particles is finite at zero energy and so the Bose—Einstein condensation
cannot happen.
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Figure 1. R values for GS in the rangeD< n < 3.0 for p = 1, 5, 10, 20, 30 andR for p — oo
in units of 5.3/ Vg.

The R values for the classical limiy — 0 and the high-density limit k& » are not
explicitly shown in figure 1 because of a lack of numerical precision. Here we show results of
analytical calculations in the limits.

First, in spite of the fact thak is zero for ideal classical gases, we show thatRhalues
of BE and FD in the limity — 0 are different from that of ideal classical gases. Expanding
G/ (n) in series ofy under the condition &< n < 1, we get

o) ) 1 1 ) 1 1
G — JlZ) — 1 J(p+l)( ) 20
(=) {n <1> (p+Dn ) } (20)

j=1

and approximating the functions up tax3), we obtain

1\ 1\
Gi(n) = n+n? (§> —(p+ Dt (p—+1> +0(n3). (21)

Comparing these functions with equation (14), we notice that these functions reduce to
h;(n) of FD for p = 1 and that of BE fop > 2. In consequencR calculated by equation (18)
takes two different values depending pn= 1 or p > 2 in the limitn — 0. Straightforward
calculation leads us to the following two valuesPfn units of 5.3/ Vg:

Y2 s
imRr=1{ 32 (22)
o | Y2 _1
32 (p=

that are different fronR = 0 of ideal classical gases obeying Boltzmann statistics. This is a
new result as far as we know. This difference originates from the fact that the lowest order
terms of Q»3) in the numerator of equation (18) are completely cancelled out and so the next
order terms of @;*) involving statistical differences become leading terms.
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Figure 2. A three-dimensional plot oR for GS in the ranges.Q < n < 3.0 and 1< p < 30.

To explain the matter in detail, we write the grand partition function of ideal classical
gases:

3/2 00
Ing = Vg\/r_;tzﬁsgﬂ/o %é’ﬁde (23)
as
InE = gA 3V Bs2(n) Bi(n) = 1 /oo 1 x' Lo, (24)
L) Jo nter

Partial integration leads to
Bs;2(n) = Bzj2(n) = B12(n) = B_1/2(n) = 1. (25)

These functions are just the first term in the rhs of equation (21), and by replacing
by B;(n) in equation (13) we geR = 0 independently of).. For this reason th& of ideal
quantum gases obeying Gentile’s statistics is not equal to that of ideal classical gases.
Next we reconsider, from the thermodynamic point of view, the reason whg tredues
of Gentile’s statistics in the limiy — O are divided into two groups, depending pr= 1 or
p > 2. Taking advantage of the well known relations between the grand partition function
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and thermodynamic quantities, we have

PV =kTInE = kTVg)fSGs/z(fl)

1\5/2 1 \*?
= kTVgA_3 n+ )72 (§> —(p+ ]_)np+1 <m> + 0(7]3) (263-)
0
N =kT <@ In E) = Vg)F?’Gs/z(n)
T,V
1\3/2 1 3/2
= Vg (n +n? <§> —(p+Dn”t (—p " 1> + O(n3)) (26b)

whereP is the pressure and the number of particles. From (2band (2®) we get up to
O@n)

1 5/2

kTN 1\
1+ > n (r=1

and usingV instead ofi;, we obtain

N R, 7 \32
B - e
_ Vg 2 \mkT 27
kTN N R/ 7w \32
Vg 2 \mkT

These equations represent the state equations of ideal quantum gases obeying Gentile’'s
statistics in the limity — 0, and the second terms are regarded as corrections for pressure
or quantum mechanical exchange effects [20]. So we can say that the quantum mechanical
exchange effect is repulsive fgr = 1 and attractive fop > 2 as well as BE. On the other
hand, as stated abovg,in the limit » — 0 is negative forp = 1 and positive forp > 2.

These facts support the hypothesis made by JM: the difference of the siyisafaused by
the qguantum mechanical exchange effect.

Secondly we examin® in 1 <« n. As seen from figure 1R for ideal quantum gases,
except BE, takes a negative value wher 4, and seems to approach zero from the negative
side when 1« n. We analytically show such characteristicsrof

ExpandingGs,2(n) in series with respect t@ for o >> 1, we get

2 5 7% p a4
T L 12 _ T g
{5”“ 2 p+1” 120[

Giaa) = } w24 0(a7/2)} .
(28)

Differentiating Gs,>(«) with respect tax, we can get the other functiorss > (), G1/2(cx),
G_yp2(a):

I'%/2) (p+1)3

G3pp(a) = pa’/? + n—zLa—l/z + n_A 1_ 1 a2 + O(@~9?)

T TER 4p+1 80| (prD?

2
I g V- ”_L -3/2 4 o) —7/2 29
Gypo(a) rG5/2) {Zpoz 8 T (a2 (29)
3 3n? p

G_ = — -1/2 + -5/2 + O -9/2 )

2@ = 1) {4” LTI )
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Using these functions, we see thiatn 1 « « is as follows:

1_(5 -1

ThenR for p < oo approaches zero from the negative side kX or 1 < ». In this limit,
in turn, Gentile’s statistics, except— oo, behaves like FD with respect ®.

We try to explain its reason by extending the derivation of thermodynamic formulae in
the classical limity — 0 to the other limit 1« «. In that limit we get

PV =kTInE = kTVgr3Gsa(a)

1 2 % p rt 1
— kTV k—3 = 5/2 + 1/2 _ 1 _ -3/2
8% T2 {5p“ 2 p+1% T 1207 (p+13/”

(31)
d
N=kT(—InE = Vgr3G3p(a)
I T,V
= Vg)»_3 ! p()l3/2 + 7;_2_13 a Y2+ ﬂ—A 1- a~%? (32)
ro/2) 4 p+1 80 (p+ 13
or
PV 2 2
2 S+ Ea?). (33)
kTN 5 p+1
Elimination ofa from equation (33) with the aid of equation (32) leads to the state equation
1672\ "2 (N\®(, 5 =2
P==(2) Z(2) {1+2 " 452 (34)
5\ pg m\V 6p+1
where
N}\’3 2/3
w=|—T(3) (35)
rve

is the first-order solution of equation (32). The main term of equation (34 ferl is written

as
17622\ 12 /N \®
r=s(5) RE) =

which is just the state equation of degenerated Fermi gases [20], so we can regard the second
term in the rhs of equation (34) as a correction for pressure & I, and the quantum
mechanical exchange effect should be noted as repulsive. Hence, this case also supports the
hypothesis proposed by JM: < 0 corresponds to the quantum mechanical repulsive forces.

6. Conclusion

A family of grand partition functions for ideal quantum gases becomes a two-dimensional

space having coordinates= u/kT andB = 1/kT. This family is an exponential family in

the geometrical theory of information, so we were able to define a metric tensor and catculate
JM studiedR for FD and BE and concluded that a biggemeans a less stable state

of systems, and also made the hypothesis that the sighinfthe, — 0 limit manifests a

guantum mechanical exchange effect. This conclusion and hypothesis are attractive. However,

possibilities have been left that a divergiRgoccurs in other cases and that the change of the

sign of R would be an accident. Motivated by this, we studied whether this conclusion and
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hypothesis are available to an intermediate statistics and also investigated the-casehich
JM never referred to. Specifically, we adopted Gentile’s statistics, which is the simplest of all
intermediate statistics. In Gentile’s statistics, the maximum number of particles in a state is
an arbitrary integep, in contrast with one for FD and infinity for BE, aritlis specified byp
andy in units of 5.3/ Vg. We studiedrR numerically for 01 < n < 3.0 and analytically for
n — 0 and 1« n by expanding, in series, the partition function of Gentile’s statistics, and
obtained the following results.

Inthe range @ < n < 3.0, R values forp > 2 converge to that of BEp — oco) whenp
takes small values, and gradually risejas increased, but start to decrease at arourdl.0,
above which theR values become negative and finally converge to that of B 1) in the
limit 1 <« n. Inthis range R monotonically changes with and takes values between FD and
BE, so we can say that Gentile’s statistics is intermediate between BE and FD with respect
to R.

In the limitn — O, R for p = 1 andp > 2 take different values such as

+£ (p=22

imRr=1{ 32
e oy
32 p=>

These values are not consistent with= 0 for ideal classical gases. Hence we can say that a
quantum statistical property is maintainedtineven in the classical limit. We also investigated
a quantum mechanical exchange effect through the state equations in the classical limit, and
found that the effect is repulsive fgr = 1 and attractive fop > 2 as well agpp — oo. The
fact that the two values a@t exist in the limity — 0 is consistent with the quantum mechanical
exchange effect in the limit, that is repulsive when< 0 and attractive wheR > 0.

Such a quantum mechanical exchange effect was also examined in the tmnit,Jand
we found that the effect is repulsive for allexceptp — oco. Again the result is in conformity
with the fact thatR < 0 for all p exceptp — oo in the limit 1 < n.

Furthermore, we never observed any divergenck ekcept for the infinity ap = 1 for
p — oo. In other words, the divergence @foccurs only for BE. From this observation, we
think that the divergence @& for BE corresponds to Bose—Einstein condensation at the critical
point and manifests the unstableness of systems, as suggested by JM.

From these results, we conclude that the signkofor ideal quantum gases obeying
Gentile’s statistics as well as FD and BE manifests a quantum mechanical exchange effect and
that larger values oR correspond to unstable systems.
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